
Interacting with Linked Data via Semantically
Annotated Widgets

Armin Haller1, Tudor Groza2, and Florian Rosenberg3

1 CSIRO ICT Centre, armin.haller@csiro.au,
2 University of Queensland, tudor.groza@uq.edu.au

3 IBM T.J. Watson Research Center, rosenberg@us.ibm.com

Abstract. The continuous growth of the Linked Data Web brings us closer
to the original vision of the Web as an interconnected network of machine-
readable resources. There is, however, an essential aspect in principle still
missing from this vision, i.e., the ability for the Web user to interact directly
with the Linked Data in a read/write manner. In this paper we introduce a
lifecycle and associated mechanism to enable a domain-agnostic read/write
interaction with Linked Data in the context of a single data provider. Our
solution uses an ontology to build a binding front-end for a given RDF model,
in addition to RDFa to maintain the semantics of the resulting form/widget
components. On the processing side, a RESTful Web service is provided to
seamlessly manage semantic widgets and their associated data, and hence
enable the read/write data interaction mechanism. The evaluation shows
that the generation process presents no performance issues, while the content
overhead required for the actual form-data binding is kept to a minimum.

1 Introduction

Over the course of the last five years, the progressive use of Semantic Web tech-
nologies in conjunction with the Linked Data principles [3] has led to an explosion
of datasets being openly published on the Web. The emergence of this Linked Data
Web [6] was foreseen in the very early conception of the World Wide Web itself.
The original vision had, however, a second part that regarded the Web as a bi-
directional communication channel between content producers and consumers [5]. In
other terms, as opposed to today’s read-only Web, which allows us only to act as
simple viewers with respect to the published content or data, the read/write Web
enables a direct interaction, as part of a common creative process.

From the pure textual created/consumed content perspective, social media envi-
ronments such as Facebook, Twitter, blogs or wikis are close to fulfilling the vision.
However, interacting with the large diversity of existing Linked Data in a read/write
fashion over a typical Web application is still an open research topic. Some work has
already been done in the area (e.g., [16,4,13]), in general by creating (HTML) forms
as a medium between RDF data and humans. While this bridging concept represents
probably the best solution, the underlying technical aspects of current approaches
share a common drawback: they either require manual mappings between domain
concepts and form components, or are specifically tailored for a particular domain
(i.e., forms generated for a specific schema/ontology describing a dataset).



This paper presents a novel solution aimed to bring us a step closer to the original
vision, by providing a lifecycle and associated mechanism to enable read/write inter-
action with Linked Data exposed by a single producer, via Web forms embedded in a
widget. We use widgets as a manifestation paradigm because of their versatility and
seamless integration possibility within diverse Web environments. The interaction
takes place in a local dataset context (i.e., the context of a dataset exposed by the
producer), however subject to the user’s knowledge, it also takes advantage of the
global Linked Data Web context. The proposed lifecycle is applicable to arbitrary
RDF graphs (hence being domain-agnostic) and comprises three phases, described
in the following via the direct contributions of this paper:

Widget generation. We propose a markup ontology that describes the structure
of a Web form, the RDFa User Interface Language [12] (RaUL), for semantically
defining Web widgets. We use RDFa to maintain the semantics of the widget in
XHTML and for binding input data in Web forms/widgets to an RDF graph.
A RaUL widget provides a binding to RDF data similar to what popular tradi-
tional web application frameworks (e.g. Ruby on Rails [19], GWT [10], Apache
Struts [21] etc.) provide for a relational model. The data submitted through a
semantically annotated widget is processed by our proposed ActiveRaUL client-
side JavaScript (JS) API and send to the ActiveRaUL Web service where it is
stored as RDF triples in the underlying database. If the same data is used by
multiple Web widgets, it can be bound to the underlying widget elements by
querying for the same uniquely defined resource. These relations (triples) can
exists locally, or in the Linked Data Web.

Widget deployment. We provide ActiveRaUL, a RESTful Web service to seam-
lessly deploy and manage generated widgets. ActiveRaUL maps the four common
HTTP methods, POST, GET, PUT, DELETE to corresponding CRUD operations (i.e.,
CREATE, READ, UPDATE, DELETE) on an RDF model in the backend. This approach
relieves the Web developer from defining SPARQL queries to be executed when
data is submitted in the Web widgets. Depending on the desired operation on
the model, only the appropriate method in our Web service has to be called.

Widget usage. The Web user is able to transparently manipulate the underly-
ing RDF data via traditional Web forms in a browser, while being unaware of
the underlying data binding mechanism. Using a non-ambiguous RDF model as
binding mechanism in RaUL forms allows the ActiveRaUL client-side JS API to
retrieve data that already exists in the Linked Data Web (e.g., personal infor-
mation about a user which is stored and published elsewhere) and pre-populated
the form elements.

Following this lifecycle, a developer only needs to deploy the backend service4 and
to deal with the usual form styling elements, unless s/he explicitly opts for manually
creating the widget model. In this case, knowledge about the RaUL ontology is
required, however, even so, the widget model once created can be shared with and
immediately adopted by others.

The remainder of the paper is structured as follows: Sect. 2 introduces a motivat-
ing/running example used in Sect. 3 to showcase the phases of the proposed lifecycle.

4 The service is packaged as a Web archive and available for download at:
http://w3c.org.au/raul/



Fig. 1. Examples of simplified forms used in a typical trading platform

Sect. 4 presents the ActiveRaUL service, its architecture and the client-side JS API.
In Sect. 5 we benchmark the overhead introduced by RaUL annotations and the
performance of the ActiveRaUL service, and before concluding in Sect. 7 we discuss
existing related work in Sect. 6.

2 Running example

To illustrate our approach, we introduce a running example inspired from a typical
e-Commerce interaction. Trading platforms are ideal candidates for exposing their
product datasets on the Linked Data Web. Pioneering examples already exist, such as
http://www.bestbuy.com, which uses RDFa and the Good Relations ontology [14]
to publish its product information as Linked Data. In addition, due to the very
nature of the domain, one can truly exploit the benefits of the Linked Data Web,
as product instances in one site may have slightly different or extra information on
other sites. Hence, being able to link the different instances brings an added value
for the end-user.

Our example simulates a second-hand goods trading platform at which registered
users can sell and buy second-hand goods 5. For demonstration purposes, and later
for understanding the value provided by our approach, we consider a scenario in
which a typical user performs three basic (yet common) operations: registration,
selling a product and buying a product. Fig. 1 depicts these three operations by
means of simplified widgets generated by our solution from the underlying RDF
data supposedly used by the trading platform. Some additional details on the three
operations are presented as follows:

User Registration. A new seller/buyer has to register a new user account on the
e-Commerce website. The user requests the registration form, which offers him
the standard fields to fill in his data (Fig. 1, part A). One option would be to
directly use the FOAF [7] profile.

Product Advertisement. A user, once registered, may add products to be sold
(Fig. 1, part B). The associated form / widget consists of examples of common
fields used to describe a product. Similar to the first operation, the user could re-
use an existing description of the product on the Linked Data Web, by entering
the product’s URI.

5 The example can be tested online at http://w3c.org.au/raul/demo.html

http://www.bestbuy.com
http://w3c.org.au/raul/demo.html


Widget
Element

ListboxTextbox

Page

Checkbox

Button

Listitem

Group

Radiobutton

Widget

READ
Operation

UPDATE
Operation

CREATE
Operation

DELETE
Operation

CRUD
Operation

group

item

widgets

widgetElements

Fig. 2. The RaUL form model

Bid on a Product. Finally, the user may want to purchase an advertised product.
The product can be easily found by filling in the form / widget depicted Fig. 1,
part C.

In the remainder of the paper we show how by starting from the underlying RDF
representation of the product and using RaUL, we are able to generate semantically
annotated front-end widgets to uniformly identify the data input, and to link it
to the Linked Data Web. At the same time, we show how to manipulate the data
stored in the trading platform’s triple store over the ActiveRaUL RESTful service
interface.

3 A framework for data publishing in RDFa

In this section we detail the three phases of our proposed lifecycle, i.e., widget genera-
tion, deployment and usage, all using as back-end the ActiveRaUL service presented
in Sect. 4.

3.1 Widget Generation

The first step of the lifecycle creates a widget model in RDF, using the RaUL
ontology. The widget generation task is performed by the developer, who, subject
to the chosen option (i.e., manual or semi-automatic), may need to be familiar with
the RaUL ontology. However, this is done once for the lifetime of the site and can
be compared with the creation of a form (widget) in HTML or a template in Web
application frameworks like Ruby on Rails [19], GWT [10], Apache Struts [21] etc.
However, in contrast to HTML forms that are usually custom-build for every website,
RaUL-based widget models are reusable RDF graphs which are assigned a URI by
ActiveRaUL. As such, they can be reused and can become standardised widget
models for certain tasks themselves. Using the ActiveRaUL framework, there are
two options to create a widget: (i) manually, by posting a handcrafted RaUL-based
widget model (in RDF/XML, RDF/JSON or RDF/N3) to the ActiveRaUL service;



<!DOCTYPE rdf:RDF [
<!ENTITY product

”http://w3c.org.au/raul/service/public/forms/addproduct”> ]>
<rdf:Description rdf:about=”@product#currency”>
<rdf:type rdf:resource=”http://purl.org/NET/raul#Listbox”/>
<id xmlns=”http://purl.org/NET/raul#”>transaction type</id>
<value xmlns=”http://purl.org/NET/raul#”>@product#value currency
</value>
<list xmlns=”http://purl.org/NET/raul#”>@product#currency list

</list>
</rdf:Description>

<rdf:Description rdf:about=”@product#currency list”>
<rdf:type rdf:resource=”http://www.w3.org/1999/02/22−rdf−syntax−ns

#Seq”/>
<rdf: 1 xmlns=”http://purl.org/NET/raul#”

rdf:resource=”@product#currency 1”/>
<rdf: 2 xmlns=”http://purl.org/NET/raul#”

rdf:resource=”@product#currency 2”/>
</rdf:Description>
<rdf:Description rdf:about=”@product#currency 1”>
<rdf:type rdf:resource=”http://purl.org/NET/raul#Listitem”/>
<label xmlns=”http://purl.org/NET/raul#”>USD</label>
<value xmlns=”http://purl.org/NET/raul#”>USD</value>

</rdf:Description>
<rdf:Description rdf:about=”@product#currency 2”>
<rdf:type rdf:resource=”http://purl.org/NET/raul#Listitem”/>
<label xmlns=”http://purl.org/NET/raul#”>EUR</label>
<value xmlns=”http://purl.org/NET/raul#”>EUR</value>

</rdf:Description>

<!DOCTYPE html PUBLIC ”−//W3C//DTD HTML 4.0//EN” [
<!ENTITY product

”http://w3c.org.au/raul/service/public/forms/addproduct”> ]>
<div about=”@product#currency” typeof=”raul:Listbox”>
<span style=”display:none;”>
<span property=”raul:id” content=”transaction type”/>
<span property=”raul:value” content=”@product#value currency”/>
<span property=”raul:list” content=”@product#currency list”/>

</span>
</div>
<select id=”currency” name=”currency”>
<option value=”USD”>USD</option>
<option value=”EUR”>EUR</option>

</select>
<ol style=”display:none;” about=”@product#currency options”>
<li rel=”rdf: 1” resource=”@product#currency 1”></li>
<li rel=”rdf: 2” resource=”@product#currency 2”></li>

</ol>
<div about=”@product#currency 1” typeof=”raul:Listitem”>
<span style=”display:none;”>
<span property=”raul:label” content=”USD”/>
<span property=”raul:value” content=”USD”/>

</span>
</div>
<div about=”@product#currency 2” typeof=”raul:Listitem”>
<span style=”display:none;”>
<span property=”raul:label” content=”EUR”/>
<span property=”raul:value” content=”EUR”/>

</span>
</div>

Fig. 3. A RaUL Listbox in RDF/XML (left) and the generated XHTML+RDFa (right)

or (ii) (semi)-automatically, by posting an arbitrary RDF graph to the ActiveRaUL
service which will then create the corresponding RaUL-based widget model.

The RaUL ontology6 (defining the widget model) consists of two parts: (i) Form
controls describing the structure of the widget, and their associated operations (i.e.,
READ, UPDATE, CREATE or DELETE), and (ii) a Data model defining the structure of
the exchanged data as RDF statements which are referenced from the form model
via a data binding mechanism. The model gives meaning to the data used in the
form controls by uniquely referencing standard ontologies on the Semantic Web.

Form Controls. A form control in RaUL is an element that acts as a direct point
of user interaction and provides access to the triples describing the data model. Fig. 2
depicts a high-level overview of the RaUL form model defining a set of form controls.
As most of the concepts have a self-explanatory name we refer the interested reader
to our earlier publications [12,11] for more detail on the ontology itself. It is worth
mentioning, however, that the controls have corresponding XHTML elements which
are used when generating the widget for rendering and interaction purposes. Fig. 3
shows the RaUL representation of a Listbox and its corresponding XHTML created
by the ActiveRaUL service, part of the Product Advertisement widget introduced in
our running example in Sect. 2.

Data Model. In contrast to untyped key/value pairs used in traditional XHTML
forms, data in RaUL widgets is submitted in a structured way, as RDF data accord-
ing to a certain schema. Hence, the data model is de-coupled from the form controls.
Handcrafting the form–data mapping provides the dataset developers with full flex-
ibility in defining the structure of the model. Every form control in the widget maps
to (a set of) triples that describe the input. For example, the form controls composing
the User Registration widget in our running example (Fig. 1 part A in Sect. 2) could
be mapped using the FOAF ontology and the W3C Time ontology [15] as follows:
(i) FOAF URI – foaf:Person (ii) First name – foaf:givenName (iii) Last name

6 RaUL can be found at http://purl.org/NET/raul#

http://purl.org/NET/raul#


/* Defined Reification Mapping */
<span about=”#valuefirstname”>
<span property=”rdf:subject” content=”http://...” />
<span property=”rdf:predicate” content=”foaf:givenName” />
<span property=”rdf:object” content=”” />

</span>

Fig. 4. RDFa reified triple for a foaf:givenName object.

– foaf:familyName (iv) Email – foaf:mbox (v) Birth day – time:day (vi) Birth
month – time:month (vii) Birth year – time:year . Similarly, the mappings behind
the other two widgets could be handcrafted, using for example the GoodRelations
ontology [14].

The actual binding of the form controls to the underlying data structure is re-
alised via reification within the RDFa embedded in the resulting XHTML form con-
trol content. Fig. 4 shows, for example, how the firstname Textbox in the RaUL User
Registration widget references the RDF triple representing the corresponding under-
lying data element (i.e., <http://...><foaf:firstName> <’’>). The rdf:subject

triple references the URI assigned by the ActiveRaUL service for the instance graph,
the rdf:predicate triple is a reference to the URI of a standard Web ontology prop-
erty, and the rdf:object triple is a reference to the value that can be edited by the
respective form control. Empty rdf:object fields serve as place-holders and are
filled at runtime by the ActiveRaUL client-side JS API with the user input.

Semi-automatic widget generation. To assist the developer/ontology engi-
neer in the creation of a RaUL widget model, we propose a mapping framework
to semi-automatically derive semiotics according to our RaUL user interface model
from arbitrary RDF graphs. Although it can be foreseen that such user interface
(widget) models become part of the Linked Data Web, there are no standard models
available yet. Thus, the ActiveRaUL service includes a generation algorithm that
creates a best-effort widget model on any deployed RDF graph. Figure 5 briefly
outlines our algorithm. The RaUL-generation function takes as input the URI (U)
created by the ActiveRaUL controller for the new widget model (see Sect. 4.1) and a
ground RDF graph G with no blank nodes (if blank nodes exist, they are discarded).
The algorithm iterates through all unique subject URIs and creates a corresponding
RaUL Widget (line 6-8). The trim-fragment() function creates a fragment from any
input URI and ensures that there are no duplicates. Then, for every predicate in G,
where the subject is a URI reference, a RaUL WidgetElement is created. The actual
type of the WidgetElement is determined as follows: if the predicate px exists only
once in G and if the object is a Literal and the XSD datatype is not boolean then
a RaUL Textbox is created (line 11-14). Also the associated reified triple referenced
through the value property (line 12) is created with the create-reified-triple() func-
tion (line 13). The value of the object ox in G is inserted as the value for the object
of the reified triple. If the datatype of the object ox is boolean then a RaUL Group
(17-19) is created and two RaUL Radiobuttons are created (line 20-24). If a predicate
px occurs more than once in G and if the object ox is a Literal, a RaUL Listbox is
created (line 26-31), a RDF sequence with the number of predicates px (line 32) is
inserted and for each predicate a RaUL Listitem with the value of the object literal
in G is created. If the object ox is a Literal then a raul:label with the value of ox
is created (line 38-39), if the object is a URI reference and if the URI reference is in
the local graph, we follow it and check for the existence of a triple with a predicate



rdfs:label. If it exists we use the object oy of this triple for the raul:label property of
the Listitem (line 42-43), otherwise, we use the URI reference (line 44-45). For every
WidgetContainer we create a RaUL submit Button (line 51).

The resulting RaUL widget model is currently meant for assisting the developer,
but in most cases he will need to refine the model which can be retrieved via its URI
assigned at generation time by ActiveRaUL. However, additionally to the best-effort
generation of form controls, a correct data binding between the form controls and
data model is ensured, significantly easing the effort of the developer in defining/re-
fining the widget model.

3.2 Widget Deployment

The ActiveRaUL service offers an endpoint to deploy a widget with a POST re-
quest to its /public/forms resource. The developer has two options for the payload
when deploying a widget depending on the chosen generation path: (i) a handcrafted
RaUL-based widget model that can be deployed within the public namespace
/public/forms of the ActiveRaUL service backend (to support the re-use of generic
form models in other Semantic Web applications and enable the emergence of stan-
dard widget models – e.g. a user registration form shared between many sites), and
(ii) an Arbitrary RDF graph, which sent to the same endpoint will trigger the
ActiveRaUL service to perform a best-effort generation of a widget according to the
process described above.

The ActiveRaUL service supports different data representations, such as RD-
F/XML, RDF/JSON or RDF/N3. If the POST request is successful, the service will
return the URL of the newly created widget in the HTTP Location header of the re-
sponse, for example, /public/forms/addproduct. The resource name addproduct

is automatically generated from the URI of the widget class in RDF.

3.3 Widget Usage

Once a widget has been deployed with ActiveRaUL by the developer, a Web user
can access and use it through a browser. The browser issues an HTTP GET request to
the URL that was created in the widget deployment phase to retrieve the widget. It
depends on the HTTP Accept header in the GET request to determine what content
type is sent back to the client. In the case of accessing the URL through a browser
the response content type is XHTML.

Whenever the Web user fills in the form or changes already existing data in a
form, the ActiveRaUL client-side JS API processes the form (details in Section 4.2) at
submission time and sends the appropriate HTTP message (derived by interpreting
the type of CRUDOperation in the RaUL widget model) to the ActiveRaUL service.
The client-side JS API distinguishes several cases when updating the rdf:object

in the reified value triple depending on the type of the form control. For example,
the values provided in Textboxes are directly written to the rdf:object in the value
triple. Listboxes, on the other hand, are more complex. After the submission of a
Listbox form control the client-side JS API creates a checked relation for all selected
Listitems. Additionally, it writes the reference to the object describing the Listitem
into the rdf:object of the value triple. If the Listbox is a multi select one, defined
by its multiple property, the referenced reified triple in the value property must be



------------------------------------------------------------------------------------------
0: RaUL-generation(U , G )

Where U is the URI assigned to the new widget model by the ActiveRaUL controller
Where G is a ground RDF graph (no blank nodes) containing a set of triples (s,p,o) with
s ∈ URIs , p ∈ URIs, o ∈ URIs ∪ Literals, where
s is the subject, p the property and o the object of the triple and, where
G(su) is the set of unique subjects in G.

1: Create empty widget model W
W(G) = I

2: OPEN.enqueue( (sl, pl, ol), ..., (sm, pm, om) )
3: WHILE OPEN 6= ∅
4: (sx, px, ox) = OPEN.dequeue()
5: IF (sx, px, ox) == END, report success and return W
6: FOR each sx in G(su)
7: Uwc = U . trim-fragment(sx)
8: W(G) = W(G) ∪ (Uwc,rdf:type,raul:WidgetContainer)
9: IF | px | in G == 1 AND if ox ∪ Literals AND literal-type(ox) is not boolean

10: Utb = U . trim-fragment(px)
11: W(G) = W(G) ∪ (Utb,rdf:type,raul:Textbox)
12: W(G) = W(G) ∪ (Utb,raul:value,value-reference(ox))
13: W(G) = W(G) ∪ (create-reified-triple(value-reference(ox)),px,ox)
14: W(G) = W(G) ∪ (Utb,raul:label,trim-fragment(px))
15: ELSEIF | px | in G == 1 AND if ox ∪ Literals AND literal-type(ox) is boolean
16: Ugr = U . trim-fragment(px)
17: W(G) = W(G) ∪ (Ugr,rdf:type,raul:Group)
18: W(G) = W(G) ∪ (Ugr,raul:value,value-reference(px))
19: W(G) = W(G) ∪ (create-reified-triple(value-reference(px)),px,ox)
20: Urbt1 = U . trim-fragment(Ugr).”1”
21: Urbt2 = U . trim-fragment(Ugr).”2”
22: W(G) = W(G) ∪ (Urbt1,rdf:type,raul:Radiobutton) ... same for Urbt2

23: W(G) = W(G) ∪ (Urbt1,raul:group,Ugr ) ... same for Urbt2

24: W(G) = W(G) ∪ (Urbt1,raul:label,trim-fragment(px))... same for Urbt2

25: ELSEIF | px | in G > 1 AND if ox ∪ Literals
26: Ulb = U . trim-fragment(px)
27: W(G) = W(G) ∪ (Ulb,rdf:type,raul:Listbox)
28: W(G) = W(G) ∪ (Ulb,raul:value,value-reference(px))
29: Ull = U . create-listuri(Ulb)
30: W(G) = W(G) ∪ (Ulb,raul:list,Ull))
31: W(G) = W(G) ∪ (create-reified-triple(value-reference(px)),px,ox)
32: FOR each px

33: i++
34: Ui = U . trim-fragment(Ulb).i
35: W(G) = W(G) ∪ (Ull,create-rdf-seq-element(px),Ui)
36: W(G) = W(G) ∪ (Ui,rdf:type,raul:Listitem)
37: W(G) = W(G) ∪ (Ui,raul:value,ox)
38: IF ox ∈ Literals
39: W(G) = W(G) ∪ (Ui,raul:label,ox)
40: ELSE
41: IF ox in G(su)
42: IF exists py in G where s == su AND py == "rdfs:label"
43: W(G) = W(G) ∪ (Ui,raul:label,oy)
44: ELSE
45: W(G) = W(G) ∪ (Ui,raul:label,ox)
46: ENDIF
47: ENDIF
48: ENDIF
49: ENDFOR
50: ENDIF
51: W(G) = W(G) ∪ (U ,rdf:type,raul:Button)
52: ENDFOR
53: ENDWHILE
54: RETURN Failure
------------------------------------------------------------------------------------------

Fig. 5. RaUL widget model generation algorithm



an RDF collection, whereby all selected Listitem references are written to the value
triple.

In our running example, when a Web user fills in the Product Advertisement
widget and submits it, the ActiveRaUL client-side JS API issues a POST request to
the resource /public/forms/addproduct/, with a payload consisting of the RDF
triples that are parsed from the RDFa annotations and the user input data. The Ac-
tiveRaUL service processes the request, inserts the data in the RDF triple store,
and sends the URI of the newly created resource for the submitted data, e.g.,
/public/forms/addproduct/101 in the HTTP Location header back to the client.
This uniquely identified data can then be accessed with different widgets, as long as
the data binding uses similar URI references for the predicates in the value triple.
For example, when a user posts a certain product for sale, this data can also be
retrieved in the widget which displays the product for sale.

3.4 Data Reuse

An important feature in this lifecycle is the reuse of existing data. Often, the data
to be provided in a widget is already present on the Linked Data Web, e.g., a FOAF
file describing a person, which usually includes many of the properties required by
a registration form. The relation-based data binding implemented by RaUL form
controls, via standardised ontologies (e.g., foaf:givenName), enables a direct re-use
of such Linked Data. The user can hence point, for example, to an existing FOAF
file and ActiveRaUL will automatically fill in the corresponding widget controls.

All widget controls designed to reference an owl:sameAs relation are treated as
reference to external data. From the XHTML rendering perspective, these widgets
correspond to Textboxes with an associated update button. At runtime, the Web
user can directly provide a URL to an existing Linked Data resource in the Textbox
which is used by the client-side JS API to retrieve the RDF graph and pre-fill the
form controls in the widget if the data exists in the resource graph. Alternatively,
the user can type in a search term which the client-side JS API uses for a call to
the Sindice API [18] which in turn returns an RDF graph that is again used to
pre-fill the remaining form controls. In either case, if a URI to an external resource
is provided the underlying owl:sameAs relations for this form control asserts that
the graph representing the user’s input data its URI assigned by ActiveRaUL is the
same individual having a different URI in the Linked Data Web.

An illustrative example of the use of form controls that reference external data
is shown in the User Registration widget (Fig. 1 part A in Sect. 2), where the
FOAF URI control was mapped to a foaf:Person, which enables the form to
auto-fill the rest of the controls according to the given schema. Similarly, in the
Product Advertisement widget (Fig. 1 part B in Sect. 2) the Product URI could
be mapped to a GoodRelations gr:Offering object.

4 The ActiveRaUL system

The lifecycle introduced in Sect. 3 relies, particularly for the deployment and usage
phases, on the ActiveRaUL backend7, described in this section. The backend consists

7 ActiveRaUL is available at http://w3c.org.au/raul/service

http://w3c.org.au/raul/service


Fig. 6. Architecture of ActiveRaUL

of two main parts, as depicted in Fig. 6: (i) a RESTful Web service, and (ii) a client-
side JS RDFa API. In the following, we detail the technical details of both the
RESTful Web service, as well as the client-side JS API.

4.1 ActiveRaUL RESTful Web service

The RESTful Web service provides a uniform way to manage widgets and the data
that is processed by the widgets. It abstracts from specific low-level details, such as
storing and querying RDF data by interacting with an RDF triple store. This enables
Web developers to use and integrate the ActiveRaUL framework without requiring
a deep understanding of the core Semantic Web technologies (e.g., SPARQL, triple
stores, etc.). Additionally, the service provides a mechanism to produce and render
widgets via RDFa annotated XHTML forms. As shown in Fig. 6, the ActiveRaUL
service architecture implements a Model-View-Controller (MVC) pattern [20].

Model. The form controls and their associated data model constitute the model
part of the ActiveRaUL system. The service uses the RaUL ontology for defining wid-
gets. However, its implementation is generic and can accommodate diverse models,
as only the plugable rendering part is depending on the RaUL ontology. ActiveRaUL
currently uses OpenRDF Sesame8 as a triple store to persist all RDF data. However,
any other triple store can be plugged into the backend with little modifications.

View. The view in MVC is the part that the user sees. In ActiveRaUL, the
model can be queried using different representations, e.g., RDF/XML, RDF/JSON,
RDF/N3 and XHTML+RDFa. The first three representations are not meant for hu-
man consumption and as such, do not require the generation of a view. ActiveRaUL
provides serialisations according to the content type requested in the HTTP header.

Only the XHTML+RDFa representation is meant for human consumption. Its
rendering as a widget is dependent on the underlying widget model, in our case
RaUL. However, to keep this view generic, the GenericViewProcessor compo-
nent is provided as a Java interface that defines method signatures for the ren-
dering functionality specific to a particular widget model. For RaUL, we provide
an ActiveRaULProcessor that implements the view generation based on the RaUL

8 http://www.openrdf.org/

http://www.openrdf.org/


model. The view generation is triggered once a client requests a view via the con-
troller (using an HTTP GET request with Accept header MIME type set to application-
/xhtml+xml). The view generation then traverses all the form controls and generates
the necessary XHTML+RDFa (see Section 3). The widget layout is built via CSS
references.

Controller. The controller is responsible for creating, updating and deleting
widget definitions and associated data required to be processed and stored as part
of a form submission. The controller also assigns URIs to the submitted resources
and returns the URL in the HTTP Location header of the response, for exam-
ple, /public/forms/addproduct. To deal with duplicate names, unique numbers
are appended at deployment time, e.g., addproduct1.For the instance data submit-
ted for a widget, the ActiveRaUL service dynamically assigns a URI, such as the
/public/forms/addproduct/101 we mentioned above.

Errors are handled by returning the status code 500 (Internal Server Error) if an
unexpected error happens. For errors related to wrong or incorrect input (payload),
the service returns a status code 400 (Bad Request). Incorrect URL parameters will
result in a 404 (Not Found).

User Authentication. In the URL scheme of the ActiveRaUL service the
/public/ part of the resource identifier is essentially a reference to a user id. As
the name implies, public represents an open access space to upload forms and data.
Any other {userid} parameter in the /{userid}/forms resource represents the
user id that has access to the forms under this specific forms resource. Access to
any {userid}, but the /public/ identifier, is only granted if the necessary HTTP
authentication credentials are present in the corresponding HTTP requests.

4.2 ActiveRaUL client-side JS API processing

The current implementation of the ActiveRaUL client-side JS API uses the rdfquery9

library as an RDFa parser and jQuery for handling and querying the XHTML DOM
tree. The actual processing consists of two main steps: (i) data binding, and (ii) RDFa
parsing and server communication.

The data binding is performed immediately prior to parsing the RDFa. If data
is retrieved from the Linked Data Web as described in Section 3.4, the data fetched
from the external RDF Graph is treated as if it was provided by the user through the
form. The update of the form controls is done by querying the received RDF for the
object values of the predicates defined in the reified triple of the widget, which are
then replaced with each successful query result. The processing of the data binding
is done directly over the XHTML DOM tree using the jQuery library. For each form
element the reified triple is identified by its URI and the respective object is replaced
with the user input value.

After the data binding operations, the documents is parsed to extract the RDF
triples from the XHTML+RDFa representation and the full RDF graph is sent to
the ActiveRaUL service. To determine which operation to invoke in the ActiveRaUL
service, the client extracts the invocation URL and the HTTP method (from the type
of the CRUDOperation defined in the RDFa annotations).

9 http://code.google.com/p/rdfquery/

http://code.google.com/p/rdfquery/


Form Element XHTML XHTML+RDFa # triples Overhead in %
min max min max min max min max

Widget 72 115 251 376 3 6 248% 226%
Textbox 41 100 88 377 2 7 114% 277%
Listbox 49 125 228 459 5 9 365% 367%
Button 48 81 98 415 2 8 104% 412%

Table 1. Added overhead by RDFa markup for a HTTP GET response for a form request.

Form Element XHTML RDF/XML # triples Overhead in %
min max min max min max min max

Widget 278 321 525 617 3 6 88.84% 92.21%
Textbox 239 298 454 613 2 7 89.95% 105.7%
Listbox 274 323 656 758 5 9 139.41% 134.67%
Button 245 278 459 720 2 8 87.34% 158.99%

Table 2. Added overhead by RDFa markup in HTTP POST/PUT requests for a form
submission/update.

5 Evaluation

Since Web forms/widgets are the de facto data interaction mechanism on the Web
and their superiority over direct RDF editing is indisputable, we chose to perform
a quantitative evaluation to analyse possible performance issues of our novel data
binding mechanism. The performance of the ActiveRaUL framework is influenced
by two factors: (i) the overhead introduced by the RDFa annotations, and (ii) the
performance of the widget/model generation.

RDFa overhead. The first aspect, i.e., the RDFa overhead, can be investigated
by looking into two factors: (i) the time required for upload/download of the gener-
ated widgets, and (ii) the efficiency of the client-side JS API.

For an accurate measuring of the overhead, we need to distinguish between the
four different HTTP methods (GET, PUT, POST, DELETE) and their associated pay-
loads. From the evaluation perspective, only the GET response and the POST/PUT re-
quests are interesting because these operations are responsible for the data transfer.
The rest have no payload attached. We have measured the additional data transfer
for HTTP requests and responses for each individual annotated form control and
compared it to the size of plain XHTML form controls.

Table 1 shows the overhead of the HTTP GET requests grouped by RaUL widget
components. The first column (XHTML) shows the size of the equivalent XHTML el-
ement rendered without annotations (in bytes), while the second column (XHTML+RDFa)
shows the size of the XHTML+RDFa element (in bytes). The minimal (min) and
maximal (max) values denote the size of the RaUL model required to generate the
simplest or the richest (i.e., using all possible properties) widget. The third column
shows the number of triples required in the backend and encoded in the resulting
widget as annotations. Finally, the last column shows the overhead in percentages.

The evaluation results show that the Widget element adds around 2.5 times the
overhead to a pure form container in XHTML. Since only one Widget is required
for every form, the bytes presented in the table are in most cases only added once
per page. An annotated Textbox takes about twice the size of the pure XHTML
form and minimally requires two triples in the form model. Adding all properties
(in total 7 RDF statements) to a Textbox causes an overhead of about 277%. The
Listbox form control rendered in RDFa adds more than 3.5 times the size of the pure
XHTML form. This is due to the fact that there is at least one Listitem associated
with a Listbox which includes the reference to the value triple. As such, a Listbox



needs at least five statements. Similar to the Textbox an annotated Button takes
about twice the size of the pure XHTML control element and minimally requires
two triples in the widget model. Again, adding all properties to a Button adds a
considerable amount of space (more than four times the pure XHTML element) to
the page due to the Group class which can be used to associate multiple buttons
together (see Section 3.1). However, it also includes 8 triples in the annotation.

Table 2 shows the results of measuring the overhead of a POST/PUT request
for each RaUL form control. We compare a standard form submission using the
application/x-www-form-urlencoded MIME type (first column) to a RDF/XML
submission (second column) via an Ajax request from the client-side JS API. Due
to its stateless behaviour, in the case of a POST or PUT request, the client-side JS
API always sends the entire form, as it is not aware of which elements need to be
updated on the server. Since the representation of the payload can vary (as dis-
cussed in Sect. 3.1), the time required for the transaction will also vary. Among the
three representations (RDF/XML, RDF/JSON and N3), we have evaluated only the
RDF/XML representation as it is the most verbose one.

The results show that the serialisation of form elements in RDF/XML causes
an overhead of minimal 87% and maximal 159%, depending on the element. The
RDF/XML sent to the ActiveRaUL Web service is generated from the RDFa an-
notations by the client-side JS API. Although the overhead seems to be significant
in size when all properties of a form control element are used, for the minimally re-
quired annotations the size of the POST or PUT request is less than double (except in
the case of the Listbox ) to the size of a pure application/x-www-form-urlencoded

request.

The second factor we have investigated in the RDFa overhead was the efficiency
of the ActiveRaUL client-side JS API. For evaluation purposes we have measured the
time required to parse the RDFa out of the XHTML, via the Blackbird10 JavaScript
library for profiling. Table 3 lists the average parse time from 10 runs for the form
elements and our demo form pages. We can see that it takes less than 20 ms to parse
the RDFa out of the XHTML for each type of form control. Evaluation the parsing
time of our motivating example documents, the most expensive parsing is the user
registration form due to the long listboxes containing items for the birthdate input.

Widget/model generation performance. In order to analyse the perfor-
mance of the server-side widget/model generation we have measured the time re-
quired to generate an increasing number of widgets and widget elements. Fig. 4
shows the behaviour (time in ms. as average over 10 runs) of the service for 1, 10
and 100 generated widgets and widget elements (i.e., Textbox, Button, Radiobutton,
Checkbutton, Listbox and Listitem). In the case of the Listbox, the number of gener-
ated Listitems per Listbox were 1, 10 and 100. The result shows, as expected, a linear
scalability of all widget elements except for two cases: (i) the widget itself, which has
a constant behaviour (as it does not have any variable elements in its construction),
and (ii) the Listbox and Listitems, which also have a linear scalability, but with a
much higher factor, due to the increased number of triples required in the model. In
reality, reaching such numbers is highly improbable because they would produce an
unusable user interface. Hence, from the usability perspective, the interesting range
of values is between 10 and 30 widget elements. Here, the service performs very well

10 http://www.gscottolson.com/blackbirdjs/

http://www.gscottolson.com/blackbirdjs/


RaUL Element Parsing (ms)
min max

Widget 16 19
Textbox 15 18
Listbox 16 20
Button 16 19

Demo Page Parsing (ms)

Add User 465
Add Product 97
Buy Product 90

Table 3. ActiveRaUL client-
side JS API performance.

Table 4. ActiveRaULProcessor performance.

(under 0.1 sec. to generate any element), with Listitems being the only element that
pose some performance issues.

Discussion. We have shown that the content overhead required for the actual
form–data binding is kept to a minimum and is, in principle, a result of using RDFa
for the annotation of the semantic forms/widgets. As there are potentially many
form controls that could be used in a widget, the user has the trade-off between the
depth of the annotations and the size and bandwidth they consume. The more triples
are used for a form control the richer its annotations. It also has to be noted that
while the ActiveRaUL processor automatically adds RDFa annotations to XHTML
pages, the practice of manually adding RDFa or Microformat annotations to XHTML
pages is already a common and accepted practice (despite its additional size). The
additional size of RDFa annotations, as shown in our benchmarks, is acceptable
in most cases. Further, adding the structure of the widget as semantic relations
(i.e., RDF statements) yields the following benefits: (a) support for full machine
understandable structured form data; (b) structured form data is encoded directly
in the Web page and usable to any Semantic Web application; (c) the reuse of existing
schemas in the modelling of the form data; (d) the automatic retrieval of form data
from the Linked Data Web; and (e) the approach is fully browser agnostic via its
rendering in XHTML + RDFa.

6 Related Work

Automatically generating forms from RDF ontologies, with the goal of interacting
with Linked Data is a relatively new research topic. We are aware of some earlier
attempts concerning form-based editing of RDF data [2], as well as mapping between
RDF and forms [16]. None of these approaches propose a generic RESTful Web
service to seamlessly combine data binding with the processing and generation of
semantic annotations in Web applications.

In [22,4] the authors proposed a read/write-enabled Web of Data through utilising
RDForms [13]. It provides a way for a Web browser to communicate structured



updates to a SPARQL endpoint. RDForms consists of an XHTML form, annotated
with the RDForms vocabulary in RDFa [1], and an RDForms processor that gleans
the triples from the form to create a SPARQL Update [23] statement, which is then
sent to a SPARQL endpoint. The difference to our approach is that RDForms does
not propose an ontology for form controls and it is bound to a domain-agnostic model
– that is, it describes the fields as key/value pairs – requiring a mapping from the
domain ontology (FOAF, DC, SIOC, etc.). Dietzold [8] propose a JavaScript library,
which provides a way for viewing and editing RDFa semantic content independently
from the rest of the application. Further, they propose update and synchronisation
methods based on automatic client requests. Their model is restricted to a fixed
environment (the Wiki), and they only present the client in-memory modification of
the model, but the execution of these atomic add/delete actions as performed in our
case by ActiveRaUL is not discussed. Furthermore, there are other approaches such
as SWEET [17], which deals with semantic annotations of Web APIs. Fresnel [9]
provides a vocabulary to customise the rendering of RDF data in specific browser.
At time of writing, there are implementations for five browsers available.

Finally, the FAST gadget ontology (FGO) 11 could provide an alternative to,
or could be complemented by the RaUL ontology for modelling widgets and their
underlying components. Currently it offers a high-level description of the organisa-
tion and information flow of gadgets in respect to screens and resources, the finest
granularity mentioned being a Form element. In practice the FGO:Form and Form

element can be specialised to the classes introduced by the RaUL ontology, thus
providing a more comprehensive model of the domain.

7 Conclusion and Future Work

In this paper we have proposed a novel approach for interacting with Linked Open
Data in a read/write manner. The approach uses the RaUL ontology for creating
and managing semantic widgets and provides a RESTful Web service, ActiveRaUL,
that is used to deploy, generate and retrieve RDFa annotated Web forms. The data
– expressed as RDFa triples – is referenced from the RaUL form model via a data
binding mechanism. The form model and data model parts make RaUL widgets
more tractable and give meaning to the input values in form controls by referencing
relations defined in standard Web ontologies. It also eases reuse of forms, since the
underlying essential part of a form is no longer irretrievably bound to the page it
is used in. We have developed a client-side JS API that parses RaUL annotated
XHTML forms and performs a data binding based on the user input or data refer-
enced in the Linked Data Web. The client-side JS API interacts with the ActiveRaUL
service, a generic RESTful Web service enabling developers to deploy and manage
their Web forms and the data model associated with these forms.

For future work we will focus on extending our approach to allow the modeling of
complex page flows including validation and navigation and their automatic render-
ing in ActiveRaUL. Currently this process is defined in widget specific JavaScript,
however we intend to include it explicitly in the RDF model. In addition, we aim
to improve the model generation algorithm, and evaluate it against a gold standard
defined by ontology experts. Finally, we plan to develop algorithms to determine the

11 http://kantenwerk.org/ontology/fast_gadget_content/fgo2011-02-11.html

http://kantenwerk.org/ontology/fast_gadget_content/fgo2011-02-11.html


type of form field to be used with object properties. Currently, object properties are
handled by manually typing their URI in Textbox form controls which is arguably
not intuitive enough.

References

1. Adida, B., et al.: RDFa in XHTML: Syntax and Processing. W3C Rec. 14 Oct. 2008,
W3C Semantic Web Deployment WG (2008)

2. Baker, M.: RDF Forms. http://www.markbaker.ca/2003/05/RDF-Forms/ (2003)
3. Berners-Lee, T.: Linked Data. Design issues for the World Wide Web, W3C (2006),

http://www.w3.org/DesignIssues/LinkedData.XHTML
4. Berners-Lee, T., et al.: On Integration Issues of Site-specific APIs into the Web Of

Data. Tech. rep., DERI (2009)
5. Berners-Lee, T., Fischetti, M.: Weaving the Web: The Original Design and Ultimate

Destiny of the World Wide Web by Its Inventor. Texere (2000)
6. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data – The Story So Far. International

Journal on Semantic Web and Information Systems (IJSWIS) 5(3) (2009)
7. Brickley, D., Miller, L.: FOAF Vocabulary Specification 0.91. Namespace document

(Nov 2007), http://xmlns.com/foaf/spec/
8. Dietzold, S., Hellmann, S., Peklo, M.: Using JavaScript RDFa Widgets for Model/View

Separation inside Read/Write Websites. In: Proceedings of the Scripting and Develop-
ment for the Semantic Web Workshop (SFSW) (2008)

9. Fresnel, Display Vocabulary for RDF. http://www.w3.org/2005/04/fresnel-info/

(2005)
10. GWT – Google Web Toolkit. http://code.google.com/webtoolkit/ (2010)
11. Haller, A., Rosenberg, F.: A Semantic Web Enabled form model and restful service

implementation. In: Proceedings of the Service-Oriented Computing and Applications
Conference (SOCA) (2010)

12. Haller, A., Umbrich, J., Hausenblas, M.: RaUL: RDFa User Interface Language – A
data processing model for web applications. In: Proceedings of the Web Information
System Engineering Conference (WISE) (2010)

13. Hausenblas, M.: RDForms Vocabulary. http://rdfs.org/ns/rdforms/XHTML (2010)
14. Hepp, M.: Web Ontology for e-Commerce. http://purl.org/goodrelations/ (2010)
15. Hobbs, J.R., Pan, F.: Time Ontology in OWL. W3C Working Draft (2006), http:

//www.w3.org/2006/timezone
16. de hOra, B.: Automated mapping between RDF and forms. http://www.dehora.

net/journal/2005/08/automated_mapping_between_rdf_and_forms_part_i.XHTML

(2005)
17. Maleshkova, M., Pedrinaci, C., Domingue, J.: Semantic Annotation of Web APIs with

SWEET. In: Proceedings of the Scripting and Development for the Semantic Web
Workshop (SFSW) (2010)

18. Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Tummarello, G.: Sindice.com: A
document-oriented lookup index for open linked data. International Journal of Meta-
data, Semantics and Ontologies 3(1), 37–52 (2008)

19. Ruby on Rails. http://rubyonrails.org/ (2010)
20. Reenskaug, T.: The original mvc reports. Tech. rep. (February 2007)
21. Apache Struts. http://struts.apache.org/ (2010)
22. Ureche, O., Iqbal, A., Cyganiak, R., Hausenblas, M.: On Integration Issues of Site-

Specific APIs into the Web of Data. In: Proceedings of the Semantics for the Rest of
Us Workshop (SemRUs). Washington DC, USA (2009)

23. W3C: SPARQL 1.1 Update. http://www.w3.org/TR/sparql11-update/ (2010), Work-
ing Draft

http://www.w3.org/DesignIssues/LinkedData.XHTML
http://xmlns.com/foaf/spec/
http://www.w3.org/2005/04/fresnel-info/
http://code.google.com/webtoolkit/
http://rdfs.org/ns/rdforms/XHTML
http://purl.org/goodrelations/
http://www.w3.org/2006/timezone
http://www.w3.org/2006/timezone
http://www.dehora.net/journal/2005/08/automated_mapping_between_rdf_and_forms_part_i.XHTML
http://www.dehora.net/journal/2005/08/automated_mapping_between_rdf_and_forms_part_i.XHTML
http://rubyonrails.org/
http://struts.apache.org/
http://www.w3.org/TR/sparql11-update/

	Interacting with Linked Data via Semantically Annotated Widgets

